BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

477

Command and Ctrl: How Digital Became Us

GALO CANIZARES
The Ohio State University

Looking at the politics of software, this paper proposes that
computation was never free from cultural bias. Early compu-
tation embedded military, workplace, and domestic values
into its structures, and as the field professionalized itself
during the late 20th century, it excluded input from diverse
social groups. Software eventually became a mechanism
that, under the guise of user-friendliness, obfuscates more
than it reveals.

If “becoming digital” suggests that architecture has
embraced and is inseparable from computation and soft-
ware, then the logical next step is to identify the limits and
merits of such a symbiosis. While scholarship during the pre-
vious decade primarily addressed technical means through
which design disciplines became digital, this paper will intro-
duce the political dimension of software. Referencing the
work of Wendy Hui Kyong Chun, Lev Manovich, and other
media theorists, | will argue that the systems used to pro-
duce architectural media are neither benign nor unbiased
platforms that are active participants in the design process.
Humans did not simply become digital, but the digital also
became human. Embedded within these machines are all of
our flaws and understandings of the world, be it aesthetic,
technical, or political. In other words, software’s role in
design could be regarded as ideological and therefore war-
rants a critical approach.

COMMAND AND CTRL

While we are indeed ‘being digital,’ the actual forms of
this ‘being’ come from software.

—Lev Manovich?

Interfaces determine user behaviors by projecting illu-
sions that are apparently neutral and have evidently
good intentions, such as clearing a path through a darkly
unknowable space for the movements of the will.

—Ryan Kuo

Is software political? And if so, what parts of it are politi-
cal? Historically, software has eluded critical scrutiny due
to its complexity and opaqueness; computers are typically
regarded as black box instruments that reveal only what is
helpful for users. Yet, as we are fully aware, software per-
vades all aspects of daily life from the time our alarms wake

us up to the last email we send out. Given this reality, the
power dynamics at play between computer programmers,
technology corporations, and users must be a part of con-
temporary discourse on the subject. These power dynamics
constitute what | call the politics of software: a flux of sover-
eign relationships that exists throughout the digital milieu. Its
participants range from ideological figures (your Steve Jobses,
Bill Gateses, Elon Musks, etc.) to GUI designers to end-users.
Most of us will undoubtedly fit in the last category since, as
software users, we continuously hand over a lot of power
to interfaces. Sometimes this takes the form of lengthy user
agreements or privacy statements, but more often than not
the exchange of sovereignty in the digital realm takes place at
the point of purchase: when we select which tool to use. The
decision to choose one software over another is a political
decision that inevitably shapes the product.

How then should architects and designers who work primarily
with software engage digital tools on a political level, beyond
the technological or the representational? For many in design
professions and design education, work is synonymous with
specific brands of software. As Lev Manovich points out in
Software Takes Command:

The new ways of media access, distribution, analysis,
generation, and manipulation all come from software.
Which also means that they are the result of the par-
ticular choices made by individuals, companies, and
consortiums who develop software...2

These choices, | argue, result in discrete allegiances and a kind
of blind faith. For example: while most users do not need to
know exactly how image editing software manipulates image
kernels, they would agree that specific applications have
become part of our everyday vocabulary. Adobe Photoshop,
for example, “has become parlance for all graphic design
software and for the act of manipulating digital images in
general.”® We say images are Photoshopped when we really
mean digitally manipulated. Yet despite the trademark trans-
mogrifying itself into a colloquial verb synonymous with
image manipulation, Adobe maintains that using Photoshop
as a verb or noun violates its terms of use.* This push and pull
between those who own and develop software, and those
who own and design with software has produced a variety
of user types: pirates, hackers, open-source die-hards, Mac
yuppies, PC gamers, Linux iconoclasts, etc.; in short, a gen-
eration of users whose design methods, vocabularies, and

478

Command and Ctrl: How Digital Became Us

Figure 1. “Computers” working on the ENIAC machine at the University of
Pennsylvania, 1945.

rituals are inseparable from the proprietary tools used in the
creative process.

Architectural historian Mark Jarzombek describes this phe-
nomenon as a new ontology. In Digital Stockholm Syndrome,
he argues that questions of being are today inextricably
linked to our “data exhaust:” the outputs of our interactions
with software. Whether explicitly or not, this “data exhaust...
is meticulously scrutinized, packaged, formatted, processed,
sold, and resold to come back to us in the form of entertain-
ment, social media, apps, health insurance, clickbait, data
contracts, and the like.”® According to Jarzombek, this not
only characterizes who we are as users, but also how we
conduct ourselves as beings; two terms growing increas-
ingly inseparable.

Beings becoming users also poses a political problem that
crosses disciplinary boundaries. What the Photoshop-as-verb
example illustrates is how software is taken for granted in
creative fields. Of course, media programs are often used
politically to produce imagery and propaganda, but what of
the programs themselves? Can we effectively say that the
applications used to depict existing images as well as bring
new elements into the world are unbiased themselves?
How do we discern between a corporate ideology and the
software it pushes? If Macs and PCs can effectively divide
up the world into digital camps, how else is software condi-
tioning its users?

Though most rhetoric that criticizes power relationships
tends to favor the abolition of such structures, the argu-
ment here is instead that close scrutiny of the biases and
blind spots of software would: (1) empower users (in our
case, architects and designers) to better utilize or select their
tools, (2) enable users to contribute to software design, (3)
expand the critical discourse of these obscure technologies,
and (4) support a skepticism of systems that obfuscate more
than they reveal.

In order to begin, however, we must first look at some early
episodes of computation, where real-world politics and com-
putation were first imbricated.

EARLY DAYS

Politics® and computation have a long history together.
Modern computation grew out of World War Il, specifically
from military decryption projects such as the Bombe and
Enigma along with the pioneering mathematics of figures
like Alan Turing and John von Neumann. During these crucial
years, various power dynamics of military protocol, com-
mand and control mechanisms, and other hierarchies would
be embedded into the language of computation. A perfect
example might be the term computer itself, which used to
designate primarily female clerks tasked with numerical cal-
culations. After 1945, the term rarely applied to humans, but
maintained its initial set of hierarchies.” Computers became
man’s (male emphasis on purpose) subservient machines,
entrusted to universities for further research, while remain-
ing owned and operated by various military sponsors.

Given the complex military and male-dominated frame-
works into which these early computers were introduced,
it would be difficult to call their structures unbiased. As
various media scholars have noted, these systems not
only produced innovative engineering solutions, but also
codified master-slave relationships and biased operat-
ing procedures.® For instance, while Howard Aiken, naval
commander and inventor of the Harvard Mark | computer,
established some of the first protocols for using a computer,
his own personal values inevitably became part of those
protocols. Aiken infamously ran his laboratory like a naval
facility, requiring that all employees “show up in full uniform
and call him ‘commander’” and would refer to the computer
as “a ‘she,” like any navy ship.”® Turing, on the other hand,
would refer to computers—both human and machine—as
slaves, going so far as to state that: “the intention in con-
structing these machines in the firstinstance is to treat them
as slaves, giving them only jobs which have been thought
out in detail.”*° As a result, both “master” and “slave” are
still terms embedded in the language of computation, par-
ticularly in device communication hierarchies, and Aiken’s
feminization of the computer can readily be seen in today’s
attitudes towards digital devices such as digital assistants
and GPS interfaces.™

Along with Turing’s and Aiken’s visions for subservient
machines, Wendy Hui Kyong Chun reminds us that, in the
1940s, “programming proper” was defined as “a man sitting
at a desk giving commands to a female ‘operator,”” suggest-
ing that in spite of a desire to innovate, computation and the
design of computing interfaces merely reflected traditional
office structures.’? Though female analysts and program-
mers existed - most notably Grace Murray Hopper, who
led the Mark I (and Il) system team with Aiken - the act of

BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

479

uld be a
maybe a
I

Twenty years ago, &

e secretary, a school te

librarian, a so

she was really a

omputer ...

= men . . . usually w
G‘rls longer to earn less pay for the

By Lois manpeL Now have come the big, dazzling com-

3 puters—and a whole new kind of work

Atrainee gets $8,000ayear programming, Telling the

...agirl “senior systems analyst ines what to do and how

gets $20,000—and up! ting the

Maybe it's time to investigate.... ending out billing notices

Ann Richardson, 1BM systems engineer, Abopaniant tlore: ’

designs a bridge via computer. Above (left) Bssjispound ke vyl

she checks her facts with fellow systems b

engineer, Marvin V. Fuchs. Right, she

feeds facts into the computer. Below, Ann

demonstrates on a viewing screen how

her facts designed the bridge, and makes Los Angeles bank. T couldn’t have heen

changes with a “light pen.” further off the track. I figure out how the

about is aptitude—
important. quality a girl
me a programmer. She also;

e are twenty t
nited (cont. on page 5

Figure 2. Article in Cosmopolitan magazine, April 1967.

computing remained dependent on “yes, sir” responses to
declarative sentences and commands. Through the 1960s,
these regimented patterns were also orchestrated spatially.
Paul Ceruzzi notes, a typical transaction began by submitting
a deck of cards to an operator through a window (to preserve
the climate control of the computer room). Sometime later
the user went to a place where printer output was delivered
and retrieved the chunk of fan-fold paper that contained the
results of his or her job.®

The interface here was a physical room populated by
operators working to enact a series of instructions. This
command-and-response structure is not only the root of
modern programming languages and their parataxic form,
but also the affirmative, passive structure of interfaces in
general. It is the reason we do not ask a computer if it can
print, but rather give it a print command. Eventually, “com-
mand and control” became less of an abstract idea and was
literalized as a codified action when keyboards introduced
the Command (Apple Ill, 1980) and Ctrl (Teletype Model
33, 1963) keys on computer keyboards. In contrast to other
keys, which would output ASCII characters, these were
designed to communicate directly with the interface, allow-
ing for quicker initiation of procedures—what we today
call “shortcuts.”

What these early episodes in computation illustrate is how
easily existing power structures can slip into new technolo-
gies. Software and hardware are not explicitly designed
as biased structures, but through the implementation and
orchestration of certain protocols, these neutral machines can
reflect the wills of their makers, as well as concurrent politi-
cal contexts. As a contemporary example, we need only look
at machine-learning software, an advanced tool for teaching
computers to recognize patterns, faces, or objects in order to
execute interpretive actions. In 2016, a University of Virginia
machine-learning experiment exposed a behavior pattern in
which image sorting software would automatically associ-
ate certain images with specific genders (e.g. kitchens with
women).!* Researchers found that the image sets used to train
these machines were gender biased themselves, and thus the
software reflected that model. Several similar instances have
occurred since, involving not just gender but also racial bias.

As advanced as these machines might be, they inevitably
reflect, and may even amplify, whatever prevailing cultural
values are available to their programmers. The University of
Virginia researchers were eventually forced to conclude that
software may “not only reinforce existing social biases but
actually make them worse.”*> Media scholar Tara McPherson
offers a corollary reminder that “digital media were born as
much of the Civil Rights era as of the Cold War era.”*® Therefore,
whether explicitly or not, these systems have embedded
within them layered cultural meanings that must continu-
ously be revisited. Narrowing in on race more specifically,
McPherson continues, “we must understand and theorize the
deep imbrications of race and digital technology even when
our objects of analysis seem not to ‘be about’ race at all.”"’
This is indeed software’s political paradox: that as it grows
seemingly democratic, it also becomes even more opaque.

LATTER DAYS

Software and ideology fit each other perfectly because
both try to map the material effects of the immaterial
and to posit the immaterial through visible cues.

—Wendy Hui Kyong Chun

If the earliest computer systems reflect the wills and meth-
ods of the military-industrial complex, then today’s systems
mirror those of Silicon Valley. One of the earliest ventures
in Silicon Valley was the Stanford Research Institute (now
SRI), which stood in direct contrast to East Coast research
laboratories. SRl sought to free computer scientists from the
shackles of government contracts and provide a culture of
unfettered creativity. Nowhere was this notion more firmly
established than at Xerox PARC (Palo Alto Research Center)
where a group of privileged individuals would design the
future of computing. PARC was, to put it bluntly, “a place
for straight cis white men in business ties to sit on bean bag

480

Command and Ctrl: How Digital Became Us

Figure 3. A brainstorming session at Xerox PARC.

chairs and embrace consequential ideas without fear of
retribution,” an image best exemplified by a popular PARC
photograph featuring staff from the Computer Science Lab
discussing work in a conference room full of bean bags.!®

Silicon Valley was notably the birthplace of the computer
mouse and the GUI, but it was also home to the earliest com-
puter ideologues. In their essay, “Black Gooey Universe,”
American Artist points out that PARC was the place where
the computer screen turned from black to white, an ideologi-
cal maneuver. They posit, “[t]he transition of the computer
interface from a black screen, to the white screen of the 70s,
is an apt metaphor for the theft and erasure of blackness, as
well as a literal instance of a white ideological mechanism.”*°
By framing the history of Silicon Valley’s lack of diversity
against its technological advancements, Artist produces a
reading of software that reveals its biases. Though the shift
from command line terminals to GUI—from black screen to
white screen—reduced the amount of knowledge required
to operate a computer, it also obfuscated its underlying
mechanisms. And while the transition was done in the name
of “user-friendliness,” the price paid was transparency.

As a result of this shift to GUIs, computers now hide most
of their protocols and source code in the name of user-
friendliness. However, because this approach “obfuscates

more than it reveals,” it could be said to enable a literal blind
faith in operating systems (0S).2° According to Alexander
Galloway, “[s]oftware operates through a technological
model that places a great premium on meticulous symbolic
declarations and descriptions, yet at the same time requires
concealment.”?! Today, software mitigates this concealment
by allowing a false sense of ownership; it refers to your docu-
ments and is tailored to your preferences. But underneath
this layer, proprietary systems retain ownership, for example,
by installing automatic updates or by allowing only specific
file extensions. By giving users a certain false agency over
their interfaces, software conditions and produces person-
ality types, from “open-source power geeks,” to those who
“think different.” This conditioning is perhaps easiest to see in
the OS wars between Mac and PC or iOS and Android. While
these wars are less politically than economically charged,
they nevertheless symbolize the various lenses through
which we view the digital world.

In a way, user-friendliness and obfuscation have become the
overarching ideologies of Silicon Valley. Ease of use is often
a prominent selling point for software. Even contemporary
programming languages are dumbed down, optimized, and
packaged so that one does not need to program from scratch,
but instead simply assembles pre-built modules. This is evi-
dent in programming suites like Python, Grasshopper, and

BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

481

JavaScript. However, just as we had to be skeptical of Turing’s
use of master-slave dynamics, we should also be skepti-
cal of software that, as American Artist noted, exists as an
echo chamber for white values and beliefs. Modularity, for
instance, was an innovative conceptin the late 1960s for UNIX
operating system designers as well as architects as well as
governments responding to social unrest;?> PARC did not hire
a female artist-in-residence until 1993; and user-friendliness
was not born out of an ethical consensus between various
social groups, but rather from a top-down, white-male, eco-
nomic drive to sell the most computers. Steve Jobs makes this
latter point clear in a 1985 interview:

People really don’t have to understand how computers
work. Most people have no concept of how an automatic
transmission works, yet they know how to drive a car.
You don’t have to study physics to understand the laws
of motion to drive a car. You don’t have to understand
any of this stuff to use Macintosh.?

With this statement, Jobs was adamantly pushing the
Macintosh as both a product and ideology. For Jobs, users
were consumers, and the consumer did not require any
advanced knowledge; user-friendliness was a commodity.?*

In a sense, advertising is the clearest litmus test for software’s
ideological promises. Take, for example, the catchphrase,
“There’s an App for That,” coined by Apple in a 2009 ad
campaign. The phrase implores users to download, and
developers to design, small applications that may optimize
daily life. Since the popularization of the tagline, apps have
surpassed boxed software as the primary method for pur-
chasing and installing computer programs. Furthermore, with
over 2 million apps on the Apple Store (3.8 million in Google
Play), app culture clearly embodies a kind of techno-positivist
agenda contingent on the belief that apps may be able to
solve any given problem.

FAITH

But faith in computation is not a new phenomenon in
architectural design. Around 1962, architect Christopher
Alexander used computation to develop a theory of urban
design that would oppose both post-war suburbanization
and modernist masterplanning. Critical to his research
was an IBM 7090 computer, which was used to compute
what Alexander would eventually refer to as “design pat-
terns,” logical rules for designing spaces from the scale
of the room to the city. Perhaps more interesting than
the computer he used, was the computer that Alexander
did not use, the Lincoln TX-2. In “Alexander’s Choice: How
Architecture Avoided Computer-Aided Design c. 1962,”
Alise Upitis tells the story of how Alexander chose the IBM
7090 over the TX-2, which had a graphical display. While
Ivan Sutherland famously used the TX-2 to develop the first
drawing software Sketchpad, the ancestor of today’s 3D

ENTIRE VILLAGE

A B C D

A1 A2 A3 B1B2B3B4 C1C2 pD1D2D3

Figure 4. Design patterns from Alexander’s book, A Pattern Language.

modeling suites, Alexander focused his efforts on abstract
design problems conceived as matrices. His method of
reducing design to a set of programmable requirements
instead of graphical relationships, Upitis argues, “was deter-
mined by the material realities of his chosen technology...
the series of IBM mainframes,” not by any other precon-
ceived notion.? In other words, the computer dictated the
method. Alexander’s choice not only led to a systems-based
approach to city planning, but also paved the way for para-
metric design and, as Molly Wright Steenson has noted,
directly contributed to the development of object-oriented
programming languages.?

Alexander’s case is curious because of the unexpected com-
putational role-reversal. His thought was clearly shaped by
the format of the system on which he worked. Steenson again:
“Alexander developed visual structures that corresponded to
what his computer programs could calculate: trees, semilat-
tices, and networks.”?” His diagrammatic approach to city
planning and design problems in general was born out of the
machinic logics of the IBM 7090. Of course, systemic think-
ing was not solely born out of computation; Cybernetics,
gestalt psychology, and heuristics (prevalent in the 1960s)
had their part to play in Alexander’s methodologies. But we
cannotignore the direct correlation between the punch card
programs, visual diagrams, and design solutions. While some
might say he was thinking computationally, for our purposes
we can state that the interface certainly had power over
the final output.

482

Command and Ctrl: How Digital Became Us

Computation affects our thinking simply by dictating the
terms of work through direct manipulation of informa-
tion-laden objects. In the case of design disciplines, these
interfaces introduce vocabularies and methods, which were
rarely used (or did not even exist) before software. Like the
Photoshop-as-verb observation, words such as “pixelated,”
“hi-res,” “raytraced,” and “parametric” are perfectly accept-
able descriptors of contemporary visual media. As software
advances, new visual judgements are continuously extracted
from the interface during the design process. In contem-
porary architectural discussions, buildings are sometimes
equated with specific software aesthetics, such as Autodesk
Revit; 3d modeling functions are used to describe formal
appearances (“lofted” and “booleaned”); and, most strik-
ingly, the noun “drawing” now refers primarily to a digital
file than a physical artifact. Software’s limitations also shape
the appearance of our products; more computational power
often equals more geometric complexity and vice versa.
Ultimately, like Alexander’s pattern languages, the actions
enabled by software are literalized by the discipline.

Beginning in 2005, the architecture firm MOS introduced a
series of software tools related to their small-scale instal-
lations. The accepted narrative is that MOS used these
experiments to play around with different entropic effects.
By using game-engines and simulation technologies as part of
their design process, they were able to introduce new behav-
iors and characteristics to traditional 3D modeling. The results
were stacks, piles, and other aggregations of forms sorted
and arranged by simulated gravity, density, elasticity, and
other real-world physics. In contrast to parametric model-
ing, which prioritized novel, formal, and complex geometries,
MOS used 3D primitives as their main formal language, relying
on forces to do the rest. In the end, the installations and soft-
ware were—and are still—praised as an alternate approach
to architectural composition making/finding.

As a result of their obvious antagonism to the smooth geom-
etry, or parametric, project MOS’s software and installations
engendered a kind of deadpan critique of contemporary
architectural practice. They advocated for primitives over
complex surfaces, screenshots over glossy renderings,
and repetition over novelty. Ironically, the practice even-
tually became the poster child for an anti-iconographic,
pro-generic method of design that is still in vogue among
young practices.

A more political interpretation might be that MOS
developed their own software as a means of critiqu-
ing contemporary architecture’s blind faith in computer
applications. Knowing that software has so engulfed the
discipline as to constrain certain modes of practice, MOS
set out to design not only a series of small installations,
but their own proprietary apps for the dissemination and
production of their architectural media. Bespoke programs

could eschew big-name-software’s cost, fluff, and intimi-
datingly labyrinthine user interfaces and workflows. No
longer would architects be subject to licensing limitations
or proprietary file formats. They could simply develop
a facade app, or a block aggregator that could iterate
through schemes and produce screenshots, which could
be used as construction drawings. In short, instead of
architectural design depending on software, it would itself
become software.

This ultimate eff-you to powerful figures like Autodesk or
Adobe allowed the office to break free from the constraints
of proprietary file-formats and concentrate exclusively on the
delineation of specific spatial, tectonic, and visual effects. By
constructing the source code that would generate gravity and
mass, for example, MOS not only followed the tradition of
artists mixing their own paints a la Yves Klein or Johannes
Vermeer, but in fact exposed the very makeup of the forces
they sought to exploit. Through a thorough investigation
of code and programming, MOS’s software unearthed the
mechanisms of entropy. Just as Alexander’s patterns pro-
posed new architectural design methods, software-simulated
entropy suggested a new path for architectural experimen-
tation. A simple act of adding gravity to a stack of blocks,
completely changes its posture and character and, therefore,
the code facilitating those forces becomes a perfectly viable
architectural material.

For MOS, designing their own software broke open the black
box of computation. But their software also exploited the
potential for the world of the screen to exist as the medium of
architecture beyond building, or the potential for software to
be used for its own effects instead of its fidelity to the outside
world. For instance, by programming their own applications,
they introduced new vocabularies to designers, who until
then remained fixated on a language pushed onto architec-
ture by software engineers (loft, extrude, sweep). After MOS,
buildings could droop, erode, drift, crumple.

Though user-friendly software, operating systems, and
applications may not initially seem like ideological tools,
they behave in similar ways. In the case of MQOS, it is dif-
ficult to reconcile whether the software is orisn’t dominant
over the designer. What is clear is the negotiation between
the two parties, which over time becomes a symbiotic
process: the app produces unexpected results, then the
user reflects on those results. At a larger scale, consider
Autodesk Inc’s 2018 homepage header: “Ready to Make
Anything.” It implies that Autodesk software is unbounded.
The audacity of this statement makes it more political than
informative. It asserts the company’s stronghold over cer-
tain industries and promotes the instant gratification we
have come to expect with real-time computing; it is ready
(user-friendly, fast) to make (draw, model, 3D print) any-
thing (limitless creativity).

BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

483

Software’s direct influence on design choices runs parallel
to Wendy Chun’s final point on the politics of software. Her
claim is an extension of Slavoj Zizek’s argument that “ideol-
ogy persists in one’s actions rather than in one’s beliefs.”?®
Because the public cannot fully understand nor control
computation, she states, software’s significance should be
measured by the actions it enables. These actions are, of
course, facilitated by interface devices in conjunction with
software. Chun argues that software’s real-time flow has
collapsed the distance between command and execution,
resulting in both a democratization of power (everyone has
the power to execute commands) and a new perception of
ideology (computers are fundamentally ideology machines).
She states, “in a formal sense computers are understood as
comprising software and hardware are ideology machines.
They fulfill almost every formal definition of ideology we
have, from ideology as false consciousness (as portrayed in
The Matrix) to Louis Althusser’s definition of ideology as ‘a
“representation” of the imaginary relation of individuals to
their real conditions of existence.””?° The interfaces that allow
certain actions emerge out of specific problem-solving initia-
tives; and to identify a problem, it is necessary to establish
a position, which is and always will be a political act. And if
software represents a kind of ideological framework concern-
ing how these commands should be executed and the scope
of its cultural effects, then the devices we use to trigger those
actions are themselves extensions of our own political will.

ENDNOTES

1 Lev Manovich, Software Takes Command (London: Bloomsbury
Academic, 2013), 149.

2 Manovich, 148.

3 Aaron D. Knochel, “Seeing Non-Humans: A Social Ontology of the Visual
Technology Photoshop,” Ph.D. diss., The Ohio State University, 2011.

4 This sentence itself is an example of a misuse of the trademark. See “General
Trademark Guidelines,” Adobe official website, accessed August 15, 2018.
https://www.adobe.com/legal/permissions/trademarks.html

5 MarkJarzombek, Digital Stockholm Syndrome in the Post-Ontological Age
(Minneapolis: University of Minnesota Press, 2016).

6 Politics will be defined here as any activities involving power dynamics.

7 Paul Ceruzzi, A History of Modern Computing (Cambridge, MA: The MIT
Press, 1998), 1.

8 See texts such as Tara McPherson, “US Operating Systems at Mid-Century:
The Intertwining of Race and UNIX,” in Race after the Internet (Abingdon, UK:
Routledge, 2013), 27-43. And Wendy Hui Kyong Chun, “On Software, or the
Persistence of Visual Knowledge,” Grey Room 18 (Winter 2004): 26-51.

9 Claire L. Evans, Broad Band: The Untold Story of the Women Who Made the
Internet (New York: Portfolio-Penguin, 2018), 34.

10 Alan Turing, “Lecture to the London Mathematical Society,” lecture, London,
February 20, 1947.

11 In computing, “master” and “slave” are typically used to designate which device
or process will be in charge of others in a system. It should be noted that there
has been campaigns to rename this relationship differently, for instance, as
“primary” and “replica.”

12 Chun, “On Software, or the Persistence of Visual Knowledge.”
13 Ceruzzi, A History of Modern Computing, 77.

14 Tom Simonite, “Machines Taught by Photos Learn a Sexist View of
Women,” Wired, August 21, 2017. https://www.wired.com/story/
machines-taught-by-photos-learn-a-sexist-view-of-women/.

15 Simonite, “Machines Taught by Photos Learn a Sexist View of Women.”

16 McPherson, “US Operating Systems at Mid-Century,” 34.

17 McPherson, “US Operating Systems at Mid-Century,” 34

18 American Artist, “Black Gooey Universe” in Unbag 2, accessed August 10, 2018.
https://unbag.net.

19 American Artist, “Black Gooey Universe.”
20 Chun, “On Software, or the Persistence of Visual Knowledge.”

21 Alexander R. Galloway, “Language Wants To Be Overlooked: On Software and
Ideology,” Journal of Visual Culture 5, no. 3 (2006): 315-331.

22 McPherson, “US Operating Systems at Mid-Century,” 30.
23 David Sheff, “Playboy Interview: Steven Jobs,” Playboy, February 1985.

24 For a comprehensive analysis of user ideologies see: Olia Lialina and Dragan
Espenschied, “Do You Believe in Users?” in Digital Folklore Reader (Switzerland:
Merz & Solitude, 2009).

25 Alise Upitis, “Alexander’s Choice: How Architecture Avoided Computer-Aided
Design c. 1962,” in A Second Modernism: MIT, Architecture, and the ‘Techno-
Social’ Moment,” (Cambridge, MA: The MIT Press, 2013), 474-506.

26 Molly Wright Steenson, Architectural Intelligence: How Designers and Architects
Created the Digital Landscape (Cambridge, MA: The MIT Press, 2017).

27 Steenson, 26.
28 Chun, “On Software, or the Persistence of Visual Knowledge,” 44.

29 Chun, “On Software, or the Persistence of Visual Knowledge,” 43.

